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Abstract
Indium phosphide is investigated using molecular dynamics (MD) simulations and
density-functional theory calculations. MD simulations use a proposed effective interaction
potential for InP fitted to a selected experimental dataset of properties. The potential consists of
two- and three-body terms that represent atomic-size effects, charge–charge, charge–dipole and
dipole–dipole interactions as well as covalent bond bending and stretching. Predictions are
made for the elastic constants as a function of density and temperature, the generalized stacking
fault energy and the low-index surface energies.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Despite considerable work in the last few decades the
detailed understanding of the properties and phases of III–
V semiconductors remains a challenge to theorists and
experimentalists. Theoretical modeling is a powerful tool to
predict microscopic properties of the local atomic structure and
its dynamic behavior. Accurate ab initio molecular dynamics
calculations have been used to generate structural models for
several semiconductors such as Si [1–3], GaAs [4, 5] and
InP [6, 7]. Ab initio calculations are, however, computationally
very demanding. Because of that the development of
analytical potentials for InP and other III–V semiconductors
is of great interest and several models have been recently
elaborated [8–18]. The modeling of binary materials is, in fact,
more difficult than that for single elements, such as Si and Ge,
for which the Stillinger–Weber [19] and Tersoff [20] models
work well. Models for these materials have to cope with the
complexity posed by the presence of both covalent and partial
ionic bonding. This work proposes an analytical interaction

potential for InP that represents this complex bonding through
many-body interactions.

InP, among other III–V semiconductors, is a very promis-
ing material for several applications such as optoelectronic
devices, e.g. InP-based solar cells [21] and quantum-cascade
lasers [22]. With advances in the synthesis of nanowires and
nanoribbons, novel applications of InP-based devices have also
been investigated such as photodetectors [23], flexible devices
for wearable and disposable electronics [24] and polarized
nanoscale light-emitting diodes [25].

Besides optoelectronics there is also considerable interest
in the high pressure phases of InP. The reason is that,
despite considerable work in the last few decades, the
detailed understanding of the high pressure structures of InP
and other semiconductors remains a challenge to theorists
and experimentalists [26]. Early InP studies [27] found a
semiconductor to metallic phase transition for InP. X-ray
diffraction data showed that this transition is, in fact, a
structural transformation from zinc blende to rock salt at
13.3 GPa [28]. Ab initio [29] and x-ray diffraction [30]
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investigations confirmed this transition to occur at 10–
10.8 GPa. At higher pressures the sequence of InP phases, up
to 46 GPa, was shown to be zinc blende, rock salt and Cmcm-
like [31]. Further transitions to Immm and CsCl structures
were predicted [32, 33] even though no experiment has been
performed to confirm them [26].

With the potential proposed here the high pressure
phases of InP and the structural phase transition mechanisms
were investigated using molecular dynamics (MD) simula-
tions [34, 35]. The calculated sequence of high pressure phases
is zinc blende, rock salt, rhombohedral and CsCl. The vibra-
tional density of states of InP and its dependence on tempera-
ture and pressure were also characterized [36].

In this paper the parameters of the proposed InP
interaction potential are presented and described in detail. The
potential is validated by comparing calculated results with
experimental and theoretical data. Predictions are made for
the elastic constants, generalized stacking fault and surface
energies and compared with first-principles calculations. This
paper is divided into seven sections. In section 2 the interaction
potential is described and the parameters for the two- and
three-body terms are provided. In sections 3 and 4 results
are presented and compared with available experimental and
theoretical data. The results are divided into structural
energies (section 3); surfaces and generalized stacking fault
energies (section 4); thermal properties (section 5); and
elastic properties (section 6). Conclusions are summarized in
section 7.

2. Interaction potential model

The interaction model for InP proposed here is based on
the model developed by Vashishta et al [37] to describe
semiconductors and ceramic materials. The functional form
of the potential consists of two- and three-body terms,
representing several physical interactions among atoms:

U =
N∑

i< j

U (2)
i j (ri j) +

N∑

i, j<k
j �=i,k �=i

U (3)
i jk (�ri j , �rik), (1)

where N is the number of atoms, �ri is the position of the i th
atom, �ri j = �ri − �r j , and ri j = |�ri j |.

The chemical bonds in InP and other III–V semiconduc-
tors have both ionic and covalent features. When InP is formed
charge is transferred between In and P atoms, resulting in a
Coulomb interaction between the ions. Atoms also interact by
charge-induced dipole and dipole–dipole (van der Waals) inter-
actions, arising from the electronic polarizability of the ions.
At short range atoms repel each other due to the Pauli exclu-
sion principle. The two-body term of the effective interaction
potential representing all these two-body interactions is given
by

U (2)
i j (r) = Hi j

rηi j
+ Zi Z j

r
e−r/λ1 − Di j

r 4
e−r/λ4 − wi j

r 6
, (2)

where Hi j is the strength of the short range steric repulsion,
r ≡ ri j , ηi j are the exponents of the steric repulsion term,

Zi the effective charge, Di j the strength of the charge–dipole
attraction, wi j the van der Waals interaction strength, and λ1

and λ4 are the screening lengths for Coulomb and charge–
dipole terms, respectively.

The strengths of the steric repulsion, Hi j , and charge–
dipole interactions, Di j , for the pair of atoms i and j are
estimated from

Hi j = A
(
σi + σ j

)ηi j (3)

and

Di j = αi Z 2
j + α j Z 2

i

2
, (4)

where A is the repulsion strength while σi and αi are the
ionic radius and the electronic polarizability of the i th atom,
respectively.

For computational efficiency the screening lengths were
fixed at λ1 = 4.5 Å and λ4 = 2.75 Å and the two-body
interaction is truncated at r = rc = 6.0 Å. For r < rc the
potential is shifted to make the potential and its first derivative
continuous at rc [38]. The expression for the shifted two-body
potential is

U (2)
i j (r)shifted =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U (2)

i j (r) − U (2)

i j (rc) − (r − rc)

×
(

dU (2)

i j (r)/dr
)

r=rc

r � rc

0 r > rc.

(5)
However, two-body interactions are not sufficient to

describe the effects of all interactions in InP. An addition three-
body potential is needed to describe the covalent character
of bond bending and stretching. Stillinger and Weber [19]
proposed a three-body term to account for the short range
order in a tetrahedrally coordinated covalent material. The
three-body term proposed here for InP has a significant
modification that is necessary to describe the melting and
the several structural transformations under pressure. At the
same time it continues to describe the bond bending and bond
stretching of the covalent bonds in the low pressure phase.
The proposed three-body potential has spatial and angular
dependence defined by

U (3)

i jk (�ri j , �rik) = �(ri j , rik)�(θ j ik), (6)

where

�(ri j , rik) = B jik exp

(
γ

ri j − r0
+ γ

rik − r0

)

× 
(r0 − ri j )
(r0 − rik), (7)

and

�(θ j ik) = (cos θ j ik − cos θ0)
2

1 + C (cos θ j ik − cos θ0)2
. (8)

Here B jik is the strength of the three-body interaction, θ j ik

the angle formed by �ri j and �rik , θ0 the covalent bond angle, C
the three-body saturation parameter and 
(r0 − ri j) the step
function defined by


(x) =
{

1 x � 0

0 x > 0.
(9)
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Figure 1. Two-body interaction term of the potential, see
equation (5), as a function of distance for In–In, In–P and P–P pairs.

Table 1. The parameters of the InP interaction potential. Length,
energy and charge units are Å, J and electron charge, respectively. Z
is the effective ionic charge, α the electronic polarizability and σ the
ionic radius. η is the steric repulsion exponent and w the van der
Waals strength. B is the three-body strength. λ1 and λ4 are the
screening lengths for Coulomb and charge–dipole interactions, while
rc is the two-body cutoff radius, A the repulsion strength, and r0, γ ,
θ0 and C are the three-body range, exponent, bond angle and
saturation parameter, respectively.

Z (e) α (Å
3
) σ (Å)

In 1.21 0.0 1.1
P −1.21 2.5 1.4412

η w (J Å
6
)

In–In 7.0 0.0
In–P 9.0 43.276 × 10−18

P–P 7.0 0.0

B (J)

In–P–In 6.969 × 10−19

P–In–P 6.969 × 10−19

λ1 (Å) 4.5
λ4 (Å) 2.75
rc (Å) 6.0
A (J) 1.7573 × 10−19

r0 (Å) 3.55
γ (Å) 1.0
θ0 (deg) 109.47
C 7.0

The short range three-body interaction has r0 = 3.55 Å and
γ = 1 Å. For InP, θ0 is the tetrahedral angle 109.47◦.

Variations of this interaction potential model were
successfully used to study a number of materials such as
SiO2 [37, 39], Si3N4 [40–42], GaAs [8, 9], SiC [43–45],
CaO [46], AlN [47, 48] and Al2O3 [49, 50].

In this work the parameters of the proposed model are
optimized to reproduce an extended experimental dataset of
InP. The fitting database includes the lattice constant, cohesive
energy, melting temperature, bulk modulus, and the C11 and
C12 elastic constants in the zinc blende structure. Table 1
summarizes the fitted parameters.

0

Figure 2. Angular dependence of the three-body interaction potential
defined in equation (8). For comparison the Stillinger–Weber
three-body interaction potential is also displayed. In this plot
θ0 = 109.47◦ and C = 7, as given in table 1.

Table 2. Theoretical and experimental values of selected InP
properties.

Experiments MD

Lattice constant (Å) 5.87 [51] 5.869
Cohesive energy (eV) −3.34 [63],

−3.48 [64]
−3.48

Melting temperature (K) 1331 [65] 1229
Zinc blende to rock salt
transition pressure (GPa)

10–13.3 [27–30] 10 [34, 35]

Bulk modulus (GPa) 71.1 [66], 72.5 [67] 72.3
Elastic constants C11 (GPa) 101.1 [66], 102.2 [67] 102.5

C12 (GPa) 56.1 [66], 57.6 [67] 57.3
C44 (GPa) 45.6 [66], 46.0 [67] 69.6

Figure 1 shows the shifted U (2)
i j (r) interaction potential

as a function of distance for In–In, In–P and P–P pairs.
The angular term of the three-body interaction potential � is
shown in figure 2. Note that in the Stillinger–Weber model
the angular dependence makes the potential energy increase
drastically when the angle deviates from the equilibrium
value. In the proposed model the potential energy saturates
for large deviations, but keeps the same dependence around
the equilibrium angle. This allows for the reconfiguration
of bonds in InP structural transformations under pressure and
during melting. Table 2 summarizes some quantities that have
been calculated using the proposed interaction potential and
the corresponding experimental data. The length scale has
a numerical accuracy of 0.005 Å, which is defined by the
histogram definition in our code, energy has an accuracy of
0.01 eV/particle, melting temperature error is ±56 K and
elastic constant accuracy is 0.1 GPa.

3. Structural energies

The energy of the zinc blende InP structure calculated as a
function of the volume is shown in figure 3(a). The curve
can be used to predict the energy at equilibrium, the lattice
constant, the bulk modulus and its derivative. Energetic curves

3
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Figure 3. Energy of various InP structures as a function of volume.
(a) Results obtained using the proposed potential for the zinc blende,
rock salt and wurtzite structures. Lines connecting points are fittings
of the Murnaghan equation of state. Zinc blende structure has the
minimum energy at E = −3.4828 eV/atom with

V0 = 25.2657 Å
3
/atom. The corresponding lattice parameter is

a0 = 5.8687 Å. The difference between wurtzite and zinc blende
energy minima is E = 0.0057 eV. (b) Curves calculated using the
density-functional theory (DFT) within the local density (LDA) and
generalized gradient approximations (GGA).

for the wurtzite and rock salt structures were also calculated
and are displayed in figure 3(a). It can be seen that the zinc
blende structure is the most stable structure for InP. The small
positive difference between wurtzite and zinc blende energy
minima, �E = 0.0057 eV, indicates a positive stacking fault
energy. These static calculations were done with a system
of 500 In and 500 P atoms in a cubic MD box. To change
the volume the system was equally scaled in the x , y and z
directions. The equilibrium energy of the zinc blende structure
indicates a lattice parameter of 5.8687 Å, in agreement with
the experimental value of 5.87 Å [51]. The energetic curves of
zinc blende and rock salt phases are also presented in [34] as
well as energetic curves for other high pressure phases of InP
up to 100 GPa. The different structural transitions among these
phases are discussed in [35].

To evaluate the accuracy of the curves in figure 3(a)
the energy–volume curves for zinc blende, wurtzite and rock
salt structures were also calculated with the density-functional
theory (DFT) method [52, 53] implemented in the Vienna ab
initio simulation package (VASP) [54]. This package is used
for all DFT calculations carried out in this work. Figure 3(b)

Table 3. Parameters of the Murnaghan equation of state fitted to the
energetic curves for the zinc blende, wurtzite and rock salt structures
shown in figure 3. E/N is the minimum energy per atom, V/N the
minimum volume per atom, B the bulk modulus and B ′ the first
pressure derivative of B.

Murnaghan equation of state

Zinc blende E/N (eV) −3.482

V/N (Å
3
) 25.3

B (GPa) 70.5
B ′ 5.88

Wurtzite E/N (eV) −3.477

V/N (Å
3
) 25.81

B (GPa) 60.88
B ′ 5.195

Rock salt E/N (eV) −3.28

V/N (Å
3
) 22.47

B (GPa) 49.85
B ′ 4.51

shows the energetic curves calculated with both the local
density approximation (LDA) and the generalized gradient
approximation (GGA) for the exchange–correlation energy.
Ultrasoft pseudopotentials [55] for In and P have been used,
where the 4d states for In were included as valence electrons.
A consistent high cutoff energy of 217 eV was used. That
corresponds to a high precision setting in the VASP code which
is suitable for describing the ultrasoft pseudopotential of In
and P. The cutoff energy was evaluated to make sure it is
sufficient for this study. The Monkhorst–Pack scheme [56]
was used for the k-point sampling in the reciprocal space.
The k-point mesh is chosen in such a way that total energy
convergence of a few meV/atom is achieved. For ease of
comparison, the curves in figure 3(b) have been shifted in such
a way that the minimum energy coincides with that obtained
using the proposed interaction potential. The order of stability
of the three curves agrees well with that obtained with the
potential. At low densities (under tension) the interaction
potential predicts the wurtzite structure to be more stable than
the zinc blende structure. However, DFT results indicate
that the zinc blende structure is always more stable than the
wurtzite structure within the density range we have considered.
The minima energy of the zinc blende curves indicates lattice
parameters of 5.96 Å, with GGA, and 5.84 Å, with LDA.
The value obtained using LDA is closer to that obtained using
the potential which is in agreement with the experimental
value.

For each of the energetic curves in figure 3(a) a
Murnaghan equation of state was fitted to the data. The
resulting curves are shown as continuous lines connecting the
calculated points in figure 3(a). This equation is defined by

E(V ) = BV

B ′(B ′ − 1)

[
B ′

(
1 − V0

V

)
+

(
V0

V

)B ′

− 1

]
+ E(V0).

(10)
The fitted parameters with a standard deviation of less than
10−5 are shown in table 3 for zinc blende, wurtzite and rock
salt structures.
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Figure 4. Schematics of the InP (a) (001), (b) (011) and (c) (111) unreconstructed surfaces given by top and bottom atomic layers. Structures
are slightly tilted from the direction alignment indicated in order to highlight the structure of the surfaces.

Table 4. Unrelaxed and relaxed InP surface energies for the
low-index (001), (011) and (111) planes.

Surface (001) (011) (111)
Unrelaxed (J m−2) 1.46 0.63 0.67
Relaxed (J m−2) 1.39 0.60 0.59
DFT-LDA (J m−2) 1.88 0.79 1.44

4. Surfaces and generalized stacking fault energies

InP unreconstructed surface energies were calculated for the
three low-index (001), (011) and (111) planes illustrated in
figure 4. Three different unit cells were used to create
orthogonal systems with these surfaces perpendicular to the z
direction. The total energy of the system was calculated for
the bulk, where periodic boundary conditions were applied in
all directions to avoid surface effects. The system energy was
recalculated with two vacuum regions added above and below
the original InP system in the z direction. The energy was
calculated with and without surface relaxation. The energy
difference between the bulk and vacuum set-ups provides the
surface energies of the system. For unrelaxed and relaxed
surfaces, the surface energies are given by table 4. To
the best of the author’s knowledge there is no experimental
result available for these quantities. However, for comparison
DFT-LDA calculations, using the VASP package [54], of the
surface energies are also shown in table 4. The energies
for the non-polar (011) surface have the best agreement. In
DFT calculations, the atomic structure of slab models is fully
relaxed. The models are constructed out of bulk configurations
obtained in the calculations described in section 3. A relatively
large vacuum layer of 12 Å is used throughout the calculations.
The k-point meshes for the (001), (011) and (111) surface
energy calculations are 5 × 5 × 1, 6 × 6 × 1 and 6 × 6 × 1,
respectively. The number of atomic layers for (001), (011)
and (111) surfaces are 12, 12 and 18, respectively. This
corresponds to 24-atom, 24-atom and 18-atom supercells.

The energy barrier for plastic deformations in InP is
estimated by calculating the generalized stacking fault energy
for rigid shear of the (111) gliding plane of the zinc blende
structure by both MD and DFT-LDA methods. The generalized
stacking fault energy calculation procedure follows that of
Tadmor and Hai [57] adapted to the zinc blende crystal. A

Figure 5. InP crystal system used for rigid sliding along the [1̄10]
direction. The right panel shows the final slid system with an
intrinsic stacking fault created.

bulk single-crystal sample with 42 atomic layers in the 〈111〉
direction was created. Vacuum layers were added above and
below the system in the 〈111〉 direction, creating (111) surfaces
that were relaxed for 10 000 �t (one time step �t = 5.0 fs).
The relaxation was achieved by quenching the temperature
to 0 K by scaling the velocities by a factor of 0.7 every
10�t . The top 21 layers of the system were then rigidly
sheared against the remaining 21 layers, on the (111) glide
plane in the 〈112̄〉 direction using 100 steps forming an
intrinsic stacking fault, see figure 5. Each atomic configuration
generated during the shearing was relaxed for 10 000�t in
the 〈111〉 perpendicular direction, in order to get a minimum
energy configuration. The energetics of the rigid shearing
shows good agreement between MD and DFT-LDA results as
shown in figure 6. The value of the unstable stacking fault
energy is 54 meV Å

−2
(MD) and 72 meV Å

−2
(DFT-LDA),

while the intrinsic stacking fault energy is 1.41 meV Å
−2

(MD) and 1.47 meV Å
−2

(DFT-LDA). The intrinsic stacking
fault energy predicted with the proposed potential is in
reasonable agreement with reported experimental values of
0.9 meV Å

−2
[58] and 1.1 meV Å

−2
[59].
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Figure 6. Generalized stacking fault energy curve for InP using the
proposed potential and DFT-LDA. For both methods the potential
energy is shown for rigid sliding along the [112̄] direction until an
intrinsic stacking fault is formed. The calculated unstable and
intrinsic stacking fault energies from potential (DFT-LDA) are
54 (72) meV Å

−2
and 1.41 (1.47) meV Å

−2
.

Figure 7. (a) Temperature dependence of the InP specific heat,
calculated from MD at constant volume, CV , and measured at
constant pressure, CP . (b) Low temperature limit of the Debye
temperature calculated from the data in (a).

5. Thermal properties

From the knowledge of the InP vibrational density of
states [36], G(ω), the heat capacity at constant volume can be

Figure 8. (a) Volume per atom and (b) energy per atom as a function
of temperature. Solid lines connecting points are a guide to the eyes.
Vertical dashed line indicates the calculated melting point at
1229 ± 56 K.

evaluated by

CV =
3NkB

∫ ∞
0

u2eu

(eu−1)2 G (ω) dω
∫ ∞

0 G (ω) dω
,

where u = h̄ω/kBT and kB is the Boltzmann constant.
Figure 7(a) displays the calculated CV as a function of
temperature along with the experimental values of CP [60, 61].
The difference between CP and CV can be estimated from
�C = CP − CV = 9T V α2 BT , where V , α and BT

are the volume, linear thermal expansion coefficient and
isothermal bulk modulus, respectively. Considering that at
T = 273 K �C = 0.7 J mol−1 K−1 the curves have excellent
agreement [61]. From the curves in figure 7(a) the Debye
temperature 
D can be calculated from the low temperature
expression CV = 12

5 π4 NkB( T

D

)3. Figure 7(b) shows the
calculated values of 
D as a function of temperature. At
T = 273 K, 
D = 523 K, from both experimental and MD
data.

The melting temperature was calculated by slowly heating
the system until the molten state was achieved. The molten
state was prepared by heating the InP crystalline structure,

6
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Figure 9. Calculated elastic properties of InP as a function of
temperature. (a) Elastic constants C11, C12 and C44. (b) Young
modulus, Y , shear modulus, G, and bulk modulus, B.

using the constant-pressure, constant-temperature MD method.
Starting from its zinc blende structure at 300 K the system was
heated in steps of about 100 K at constant P = 0 GPa. At
each temperature, the system was thermalized for 30 000�t .
Averages of energy, volume and correlation functions were
calculated over an additional 30 000�t in the equilibrium state.

In figures 8(a) and (b) the volume per atom and the energy
per atom are displayed as a function of temperature. Between
the temperatures 1173 and 1285 K a discontinuous increase
in the volume and energy per atom indicates the melting of
the system. The ensemble average temperature at these two
points gives an estimated melting temperature of 1229 ± 56 K.
This value is indicated by the vertical line in figures 8(a)
and (b) and agrees well with the reported experimental melting
temperature of 1331 K.

6. Elastic properties

As is shown in table 2, InP elastic constants were calculated
for the zinc blende structure and agree well with experimental
data. The elastic constants were calculated using the proposed
interaction potential at zero temperature directly from the
stress–strain relationship, i.e. Cα,β,μ,ν = ∂σα,β/∂εμ,ν , where
σ is the external applied stress and ε the strain [62].

The dependence of the elastic constants with temperature
is shown in figure 9(a). From the data in that figure the
most common elastic moduli, i.e. Young modulus, shear

Figure 10. Calculated elastic properties of InP as a function of
density. (a) Elastic constants C11, C12 and C44. (b) Young modulus,
Y , shear modulus, G, and bulk modulus, B.

modulus and bulk modulus, were calculated and are plotted in
figure 9(b). The Young modulus was determined through Y =
(C11 + 2C12)(C11 − C12)/(C11 + C12), shear modulus by G =
Y/[2(1+ν)], with ν = C12/(C11 +C12), and the bulk modulus
by B = Y/[3 (1−2ν)]. All elastic constants and elastic moduli
are softened at high temperatures and monotonically decay in
the range 0–900 K.

At zero temperature the dependence of the elastic
constants with density was calculated and is shown in
figure 10(a). The Young, shear and bulk moduli are shown
in figure 10(b). Within 1% density variation the bulk modulus
shows a strong dependence with density. However the Young
modulus and shear modulus are nearly independent of density
in this range.

7. Conclusions

In summary the structural, elastic, thermal and surface
properties of indium phosphide are investigated using MD
simulations and DFT calculations. MD simulations use a
proposed potential which is validated by a selected dataset of
experimental properties. Predictions are made for the elastic
constants as a function of density and temperature. Additional
joint predictions using DFT are made for the unreconstructed

7
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surface energies and the generalized stacking fault curve. As
demonstrated by the results described throughout the text, the
proposed potential has a wide range of applicability. However,
application of this model to describe surface reconstruction
processes and to characterize the properties of the high
pressure, liquid and amorphous phases should be done with
caution since the potential is not fitted to describe elemental
bonds and higher coordination.
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